Что такое математика?

что такое математика что такое математика

Элементарный очерк идей и методов.

Перевод с английского под редакцией А.Н.Колмогорова.

Книга написана крупным математиком Рихардом Курантом в соавторстве с Гербертом Роббинсом. Она призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике.

Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.

Предыдущее издание вышло в 2013 г.

Предисловие к третьему изданию на русском языке

Книга, которую держит в руках читатель,— одно из самых замечательных введений в математику в ряду тех, что обращены к широкой читательской аудитории. Ее замысел выражен в предисловии: «Нет ничего невозможного в том, чтобы, начиная от первооснов и следуя по прямому пути, добраться до таких возвышенных точек, с которых можно ясно обозреть самую сущность и движущие силы современной математики.»

Первый из авторов книги — Рихард Курант (1888–1972) — один из ведущих математиков XX века, ученик Д. Гильберта, иностранный член Академии Наук СССР. Книги Куранта неоднократно издавались на русском языке. На них выросло не одно поколение математиков. Его книги «Уравнения математической физики», «Теория функций», «Уравнения в частных производных», и «Принцип Дирихле» до сих пор остаются основополагающими при изучении математики.

Данную книгу Курант задумал написать в драматический период истории, осенью 1939 г., когда разразилась вторая мировая война. Пятью годами раньше он оказался в Соединенных Штатах Америки, изгнанный фашистами со своей родины—Германии, где он работал в математическом интституте Гёттингенского университета. Нельзя не отметить огромную заслугу Куранта как организатора в том, что этот институт стал мировым математическим центром. Собственно говоря, Курант, воплотив давнюю мечту Феликса Клейна, основал этот институт. В США Курант создал еще один выдающийся институт (ныне известный как «курантовский институт»), который играл и играет важную роль в развитии прикладной математики во всем мире.

Для осуществления своего замысла — написать книгу, читая которую можно было бы «войти в соприкосновение с самим содержанием живой математической науки»,— Курант привлек молодого двадцатичетырехлетнеготопологаГербертаРоббинса.Курант, используясвойталант организатора, сумел добыть в те трудные годы немалые материальные средства для издания такого объемного труда. Он долго колебался, выбирая название для своей книги, и окончательно утвердился в нем, лишь поговорив с великим немецким писателем, также лишенным родины, Томасом Манном.

Книга Куранта и Роббинса была переведена на русский язык и подготовлена к печати в 1947 г. Это было очень трудное время для нашей страны. Только что закончилась Великая Отечественная война, потребовавшая немыслимого напряжения. Но, несмотря на это, целесообразность издания труда Куранта и Роббинса была совершенно несомненной для проницательных ученых, думавших о будущем страны.

Однако для того, чтобы книга вышла в свет, потребовалось преодолеть существенные препятствия: у нас началась борьба с космополитизмом, когда русская культура противопоставлялась мировой, а значение последней принижалось. Для выхода книги потребовалось предисловие «От издательства». Оно было вклеено в каждый экземпляр отпечатанного тиража (15000 экземпляров), между десятой и одиннадцатой страницами, без номеров страниц и без указания о нем в оглавлении.

Требовались особые аргументы для того, чтобы уже напечатанный тираж не был уничтожен. Предисловие было написано Андреем Николаевичем Колмогоровым — одним из величайших математиков уходящего века, хотя и не было подписано им.

Это предисловие — примечательный исторический документ, в котором отражены драматические перипетии того времени. Оно напечатано в добавлении к этому изданию, но мне хочется привести здесь некоторые фрагменты из него о значении книги Куранта и Роббинса. Они актуальны и в наше время, когда живо обсуждаются проблемы математического образования.

Первые три абзаца предисловияобращеныктем основнымгруппаммолодежи, для которых, по мнению Колмогорова, книга может быть наиболее полезна. Прежде всего, это школьники, ибо «существует большой разрыв между математикой, которая преподается в средней школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки». Затем, это студенты инженерных, химических, биологических и сельскохозяйственных вузов, в которых «оставляют совершенно в стороне ряд более общих и новых идей математики… Между тем, эти идеи становятся все более существенными для всей совокупности точных и технических наук». Наконец, это «молодежь, избравшая своей специальностью математику или те разделы естественных наук (механика, астрономия, физика), изучение которых связано с прохождением вполне современного курса математики… [и которая] часто нуждается в том, чтобы еще на стадии перехода из средней школы в высшую в более легкой и наглядной форме познакомиться с различными разделами математики, вплоть до самых важных и современных».

Труд Куранта и Роббинса удовлетворяет потребности этих групп молодежи. Но не только. Эта книга интересна всякому человеку, которому небезразлична судьбанаучного знания. Вне всякого сомнения,она входит в золотой фонд литературы по математике. Книга была переведена на многие языки и сразу же после ее издания стала математическим бестселлером.

Эта книга была написана шестьдесят лет назад. С тех пор во всем мире и в математической науке произошли весьма значительные изменения. Структура книги Куранта и Роббинса во многом соответствует структуре математики, сложившейся в начале века. Представление об этой структуре дает список основных секций на Втором математическом конгрессе (Париж, 1900 г.): арифметики и алгебры, геометрии, анализа, механики и математической физики. Ныне, в дополнение к этим четырем секциям, на современных конгрессах работают секции математической логики и оснований математики, топологии, алгебраической геометрии, комплексного анализа, теории групп Ли и теории представлений, теории функций и функционального анализа, дифференциальных уравнений с частными производными, обыкновенных дифференциальных уравнений, численных методов, дискретной математики и комбинаторики, теории информации и приложений математики к нефизическим наукам.

Масштаб произошедших изменений не даёт возможности в коротких редакторских примечаниях отразить содержательно достижения в математике за последние две трети века. Поэтому мы ограничились лишь самыми необходимыми комментариями к тексту книги, но при этом значительно пересмотрели и расширили список литературы, включив в него наиболее интересные книги, ориентированные на школьников, вышедшие за последние тридцать лет.

В добавлении помещен также фрагмент книги К. Рид «Курант в Гёттингене и Нью-Йорке», посвященный истории создания книги Куранта и Роббинса.

Предисловие ко второму изданию на русском языке

Книга Р.Куранта и Г.Роббинса уже издавалась в СССР в 1947 г. Она пользуется большим успехом у любителей математики самых различных возрастов и уровней подготовки, но давно уже стала библиографической редкостью. В серии «Математическое просвещение» она займет свое почетное место.

Перевод, выполненный для первого издания под редакций покойного проф. В. Л. Гончарова, был выправлен и пополнен по последним английскому (1948) и немецкому (1962) изданиям. Восстановлен также предметный указатель. Список «рекомендованной литературы» следует оригиналу лишь в части книг, переведенных на русский язык; редакторы русского издания дополнили его рядом книг, имеющихся на русском языке.

Примечания редакторов русского издания немногочисленны (они помечены цифрами, в то время как примечания авторов обозначены звездочками 1.) Редакторы, не желая нарушать цельный и впечатляющий стиль книги, не стремились исправлять и дополнять довольно случайный выбор их указаний на историю вопроса и принадлженость отдельных результатов определенным лицам.

Мы рады поблагодарить проф. Р.Куранта за любезное внимание, оказанное им новому изданию книги на русском языке. В своем коротком обращении к русскому читателю он еще раз подчеркивает руководящую идею своей педагогической деятельности: пропаганду органического единства математики и ее неразрывной связи с естествознанием и техникой. При этом имеется в виду не нравоучения об обязанности математиков быть полезными, а наглядная демонстрация того, что живые источники математического творчества неотделимы от интереса к познанию природы и задачам управления природными явлениями.

В новом издании использованы замечания проф. К.Л.Зигеля и проф. Отто Нейгебауэра, которым мы вместе с авторами выражаем искреннюю признательность.

К русскому читателю

Выход в свет второго русского издания нашей книги — весьма приятное для меня событие. Я всегда с глубоким восхищением относился к замечательному вкладу в нашу науку, сделанному многими выдающимися математиками Советского Союза. Пожалуй, в большей степени, чем в некоторых странах Запада, русская математическая традиция сохранила идеал единства науки и способствовала упрочению роли математики в научных и технических приложениях. На меня также производит сильнейшее впечатление активное участие, которое принимают крупные математики Советской России в деле подъема математического образования. Я рад, что свое место в русской научно-педагогической литературе по математике заняла и наша книга.

Что такое математика?

Математика содержит в себе черты волевой деятельности, умозрительного рассуждения и стремления к эстетическому совершенству. Ее основные и взаимно противоположные элементы— логика и интуиция, анализ и конструкция, общность и конкретность. Как бы ни были различны точки зрения, питаемые теми или иными традициями, только совместное действие этих полярных начал и борьба за их синтез обеспечивают жизненность, полезность и высокую ценность математической науки.

Без сомнения, движение вперед в области математики обусловлено возникновением потребностей, в большей или меньшей мере носящих практический характер. Но раз возникшее, оно неизбежно приобретает внутренний размах и выходит за границы непосредственной полезности. Совершающееся таким образом превращение прикладной науки в теоретическую наблюдается в истории древности, но не в меньшей степени также и в наши дни: достаточно принять во внимание тот вклад, который сделан в современную математику инженерами и физиками.

Самые ранние из дошедших до нас образцов математической мысли появились на Востоке: около двух тысячелетий до нашей эры вавилоняне собрали обширный материал, который мы склонны были бы в настоящее время отнести к элементарной алгебре. Но как наука в современном смысле слова математика возникает позднее на греческой почве, в пятом и четвертом столетиях до нашей эры. Все усиливающееся соприкосновение между Востоком и Грецией, начавшееся во времена Персидской империи и достигшее апогея в период, непосредственно следующий за экспедициями Александра Македонского, обеспечило грекам возможность перенять достижения вавилонян в области математики и астрономии. Математика не замедлила стать объектом философских дискуссий, обычных в греческих городах-государствах. Таким образом, греческие мыслители осознали значительные трудности, связанные с основными математическими концепциями — непрерывностью, движением, бесконечностью — и с проблемой измерения произвольных величин данными заранее единицами. Но обнаружилась и решимость преодолеть препятствия: возникшая в результате великолепного усилия мысли Евдоксова теория геометрического континуума представляет собой такое достижение, которое можно поставить в один ряд только с современной теорией иррациональных чисел. От Евдокса идет аксиоматико-дедуктивное на правление в математике, проявившееся вполне отчетливо в «Началах» Евклида.

Хотя теоретико-постулативная тенденция незыблемо остается одной из самых ярких особенностей греческой математики и, как таковая, оказала беспримерное влияние на дальнейшее развитие науки, тем не менее необходимо со всей энергией указать, что практические потребности и связь с физической реальностью участвовали никак не в меньшей мере в создании античной математики и что изложению, свободному от евклидовой строгости, очень часто отдавалось предпочтение.

Не исключено, что именно слишком раннее открытие трудностей, связанных с «несоизмеримыми» величинами, помешало грекам развить искусство численных операций, сделавшее в предшествовавшие эпохи значительные успехи на Востоке. Вместо этого они стали искать пути в дебрях чистой аксиоматической геометрии. Так началось одно из странных блужданий в истории науки, и, может быть, были при этом упущены блестящие возможности. Почти на два тысячелетия авторитет греческой геометрической традиции задержал неизбежную эволюцию идеи числа и буквенного исчисления, положенных впоследстии в основу точных наук.

После периода медленного накопления сил—с возникновением в XVII столетии аналитической геометрии и дифференциального и интегрального исчислений — открылась бурная революционная фаза в развитии математики и физики. В XVII и XVIII вв. греческий идеал аксиоматической кристаллизации и систематической дедукции потускнел и утерял свое влияние, хотя античная геометрия продолжала высоко расцениваться. Логически безупречное мышление, отправляющееся от отчетливых определений и «очевидных», взаимно не противоречащих аксиом, перестало импонировать новым пионерам математического знания. Предавшись подлинной оргии интуитивных догадок, перемешивая неоспоримые заключения с бессмысленными полумистическими утверждениями, слепо доверяясь сверхчеловеческой силе формальных процедур, они открыли новый математический мир, полный несметных богатств. Но мало-помалу экстатическое состояние мысли, упоенной головокружительными успехами, уступило место духу сдержанности и критицизма. В XIX столетии осознание необходимости консолидировать науку, особенно в связи с нуждами высшего образования, после Французской революции получившего широкое распространение, повело к ревизии основ новой математики; в частности, внимание было направлено к дифференциальному и интегральному исчислениям и к уяснению подразумеваемого анализом понятия предела. Таким образом, XIX век не только стал эпохой новых успехов, но и был ознаменован плодотворным возвратом к классическому идеалу точности и строгости доказательств. В этом отношении греческий образец был даже превзойден. Еще один раз маятник качнулся в сторону логической безупречности и отвлеченности. В настоящее время мы еще, по-видимому, не вышли из этого периода, хотя позволительно надеяться, что установившийся прискорбный разрыв между чистой математикой и ее жизненными приложениями, неизбежный, по-видимому, во времена критических ревизий, сменится эрой более тесного единения. Приобретенный запас внутренних сил и, помимо всего прочего, чрезвычайное упрощение, достигаемое на основе ясного понимания, позволяют сегодня манипулировать математической теорией таким образом, чтобы приложения не упускались из виду. Установить еще раз органическую связь между чистым и прикладным знанием, здоровое равновесие между абстрактной общностью и полнокровной конкретностью — вот как нам представляется задача математики в непосредственно обозримом будущем.